VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY, BURLA DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING SESSION 2015 - 16 (Supplementary June ~ July 2016)

Total Pages-5

(Set-Q₂)

B.Tech - 3rd(M & M) Introduction to Physical Metallurgy

Full Marks: 70

Time: 3 hours

Answer Q. No. 1 which is compulsory and any five out of seven questions

The figures in the right-hand margin indicate marks

1. Answer the following in short:

 2×10

- (a) Define coordination number and atomic packing factor.
- (b) Calculate the atomic packing factor for FCC crystal.
- (c) Titanium undergoes a change in phase BCC to HCP at 880°C on cooling. Calculate the percentage volume change. Given the lattice parameters a_{BCC} = 3.32 Å and aHCP = 2.956 Å and C = 4.683Å.

Turn Over)

- (d) Show schematically the (112), (0-10) planes and [-21-1], [-1-1-1] directions in cubic crystal.
- (e) Distinguish between crystalline and non -crystalline solids.
- (f) Define burgers vector and show schematically for edge and screw dislocation.
- (g) What are the angles between the following directions of cubic crystal [001] and [111]; [011] and [101]?
- (h) Draw the phase diagram of pure iron from room temperature on wards.
- (i) Differentiate between single crystal and polycrystalline material.
- (j) Define solid solution, Gibb's phase rule, phase diagram and lever rule.
- 2. (a) State Hume-Rothery rules that favors substitutional solid solutions.

(b) Explain with a neat sketch the solidification

		of 70Ni30Cu alloy from the phase diagram.	5
	(a)	Sketch iron-cementite phase diagram and explain the invariant reactions.	8
	(b)	Check whether the reaction is energetically feasible	
		$b_1 + b_2 \rightarrow b_3$	
		where burgers vector $b_1 = a/2[01-1];$ $b_2 = a/2[-101];$ $b_3 = a/2[-110].$	2
1.	(a)	What are the different types of crystal defects? Explain with atomic scale models.	5
	(b)	A binary eutectic freezes at a fixed temperature in a binary system, whereas a binary eutectic in ternary system with three phase equilibrium freezes over a range of temperature. Explain	
		why?	5
	(a)	What are the deformation mechanisms in metals at room temperature? Show	
		schematically.	5
		(Turn On	or)

(b)	Superimpose the stress-strain curves of
	brittle and ductile materials. Explain the
	different elastic and plastic properties that
	are obtained from the stress-strain curves.

- (a) Explain the difference between resolved shear stress and critical resolved shear stress. Derive the expression for critical resolved shear stress.
 - (b) The critical resolved shear stress of perfect crystal of copper is 5 MPa. Determine the amount of stress to be applied in tension along [1-10] axis of copper crystal to make it slip on $(1 \ 1 \ -1)$ $[0 \ -1 \ 1]$ slip system.
- 7. (a) Draw the TTT curve for eutectoid steel and indicate the phases in different regions.
 - (b) Discuss the martensite characteristics and morphology of martensite. 5
- (a) Define hardenability. What is the common criterion of hardenability of steels and why?

	Enumerate the five factors affecting the hardenability of the steel.	5
b)	Differentiate between hot working and cold working.	2
c)	What is the composition, properties and applications of phosphor bronzes?	3